Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
J Biol Chem ; 298(4): 101723, 2022 04.
Article En | MEDLINE | ID: mdl-35157847

A wide range of protein acyl modifications has been identified on enzymes across various metabolic processes; however, the impact of these modifications remains poorly understood. Protein glutarylation is a recently identified modification that can be nonenzymatically driven by glutaryl-CoA. In mammalian systems, this unique metabolite is only produced in the lysine and tryptophan oxidative pathways. To better understand the biology of protein glutarylation, we studied the relationship between enzymes within the lysine/tryptophan catabolic pathways, protein glutarylation, and regulation by the deglutarylating enzyme sirtuin 5 (SIRT5). Here, we identify glutarylation on the lysine oxidation pathway enzyme glutaryl-CoA dehydrogenase (GCDH) and show increased GCDH glutarylation when glutaryl-CoA production is stimulated by lysine catabolism. Our data reveal that glutarylation of GCDH impacts its function, ultimately decreasing lysine oxidation. We also demonstrate the ability of SIRT5 to deglutarylate GCDH, restoring its enzymatic activity. Finally, metabolomic and bioinformatic analyses indicate an expanded role for SIRT5 in regulating amino acid metabolism. Together, these data support a feedback loop model within the lysine/tryptophan oxidation pathway in which glutaryl-CoA is produced, in turn inhibiting GCDH function via glutaryl modification of GCDH lysine residues and can be relieved by SIRT5 deacylation activity.


Glutaryl-CoA Dehydrogenase , Lysine , Sirtuins , Animals , Glutaryl-CoA Dehydrogenase/metabolism , Lysine/metabolism , Mice , Oxidation-Reduction , Protein Processing, Post-Translational , Sirtuins/metabolism , Tryptophan/metabolism
2.
Biochim Biophys Acta Proteins Proteom ; 1868(6): 140393, 2020 06.
Article En | MEDLINE | ID: mdl-32087359

Multiple-CoA dehydrogenase deficiency (MADD) is an inborn disorder of fatty acid and amino acid metabolism caused by mutations in the genes encoding for human electron transfer flavoprotein (ETF) and its partner electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). Albeit a rare disease, extensive newborn screening programs contributed to a wider coverage of MADD genotypes. However, the impact of non-lethal mutations on ETF:QO function remains scarcely understood from a structural perspective. To this end, we here revisit the relatively common MADD mutation ETF:QO-p.Pro456Leu, in order to clarify how it affects enzyme structure and folding. Given the limitation in recombinant expression of human ETF:QO, we resort to its bacterial homologue from Rhodobacter sphaeroides (Rs), in which the corresponding mutation (p.Pro389Leu) was inserted. The in vitro biochemical and biophysical investigations of the Rs ETF:QO-p.Pro389Leu variant showed that, while the mutation does not significantly affect the protein α/ß fold, it introduces some plasticity on the tertiary structure and within flavin interactions. Indeed, in the p.Pro389Leu variant, FAD exhibits a higher thermolability during thermal denaturation and a faster rate of release in temperature-induced dissociation experiments, in comparison to the wild type. Therefore, although this clinical mutation occurs in the ubiquinone domain, its effect likely propagates to the nearby FAD binding domain, probably influencing electron transfer and redox potentials. Overall, our results provide a molecular rational for the decreased enzyme activity observed in patients and suggest that compromised FAD interactions in ETF:QO might account for the known riboflavin responsiveness of this mutation.


Electron-Transferring Flavoproteins/chemistry , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/metabolism , Riboflavin/chemistry , Riboflavin/metabolism , Bacteria/genetics , Enzyme Stability , Flavin-Adenine Dinucleotide/metabolism , Flavoproteins , Genotype , Humans , Kinetics , Models, Molecular , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Mutation , Protein Conformation , Protein Folding , Rhodobacter sphaeroides/genetics , Rhodobacter sphaeroides/metabolism , Ubiquinone/chemistry
3.
Biochim Biophys Acta Proteins Proteom ; 1868(1): 140269, 2020 01.
Article En | MEDLINE | ID: mdl-31491587

Glutaric Aciduria Type I (GA-I), is an autosomal recessive neurometabolic disease caused by mutations in the GCDH gene that encodes for glutaryl-CoA dehydrogenase (GCDH), a flavoprotein involved in the metabolism of tryptophan, lysine and hydroxylysine. Although over 200 disease mutations have been reported a clear correlation between genotype and phenotype has been difficult to establish. To contribute to a better molecular understanding of GA-I we undertook a detailed molecular study on two GCDH disease-related variants, GCDH-p.Arg227Pro and GCDH-p.Val400Met. Heterozygous patients harbouring these two mutations have increased residual enzymatic activity in relation to homozygous patients with only one of the mutations, suggesting a complementation effect between the two. Combining biochemical, biophysical and structural methods we here establish the effects of these mutations on protein folding, stability and catalytic activity. We show that both variants retain the overall protein fold, but with compromised enzymatic activities. Detailed enzyme kinetic studies reveal that GCDH-p.Arg227Pro has impaired function due to deficient substrate affinity as evidenced by its higher Km, and that the lower activity in GCDH-p.Val400Met results from weaker interactions with its physiological redox partner (electron transfer flavoprotein). Moreover, the GCDH-p.Val400Met variant has a significantly lower thermal stability (ΔTm ≈ 9 °C), and impaired binding of the FAD cofactor in relation to wild-type protein. On these grounds, we provide a rational for the possible interallelic complementation observed in heterozygous patients based on the fact that in GCDH, the low active p.Arg227Pro variant contributes to stabilize the tetramer while the structurally unstable p.Val400Met variant compensates for enzyme activity.


Glutaryl-CoA Dehydrogenase/genetics , 2,6-Dichloroindophenol/chemistry , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/genetics , Glutaryl-CoA Dehydrogenase/chemistry , Glutaryl-CoA Dehydrogenase/deficiency , Heterozygote , Humans , Models, Molecular , Mutation , Protein Conformation , Protein Subunits/chemistry , Protein Subunits/genetics
4.
Curr Mol Med ; 19(7): 487-493, 2019.
Article En | MEDLINE | ID: mdl-31418342

BACKGROUND: Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a congenital rare metabolic disease with broad clinical phenotypes and variable evolution. This inborn error of metabolism is caused by mutations in the ETFA, ETFB or ETFDH genes, which encode for the mitochondrial ETF and ETF:QO proteins. A considerable group of patients has been described to respond positively to riboflavin oral supplementation, which constitutes the prototypic treatment for the pathology. OBJECTIVES: To report mutations in ETFA, ETFB and ETFDH genes identified in Portuguese patients, correlating, whenever possible, biochemical and clinical outcomes with the effects of mutations on the structure and stability of the affected proteins, to better understand MADD pathogenesis at the molecular level. METHODS: MADD patients were identified based on the characteristic urinary profile of organic acids and/or acylcarnitine profiles in blood spots during newborn screening. Genotypic, clinical and biochemical data were collected for all patients. In silico structural analysis was employed using bioinformatic tools carried out in an ETF:QO molecular model for the identified missense mutations. RESULTS: A survey describing clinical and biochemical features of eight Portuguese MADD patients was made. Genotype analysis identified five ETFDH mutations, including one extension (p.X618QextX*14), two splice mutations (c.34+5G>C and c.405+3A>T) and two missense mutations (ETF:QO-p.Arg155Gly and ETF:QO-p.Pro534Leu), and one ETFB mutation (ETFß- p.Arg191Cys). Homozygous patients containing the ETFDH mutations p.X618QextX*14, c.34+5G>C and ETF:QO-p.Arg155Gly, all presented severe (lethal) MADD phenotypes. However, when any of these mutations are in heterozygosity with the known ETF:QO-p.Pro534Leu mild variant, the severe clinical effects are partly and temporarily attenuated. Indeed, the latter destabilizes an ETF-interacting loop, with no major functional consequences. However, the position 155 in ETF:QO is localized at the ubiquinone binding and membrane interacting domain, and is thus expected to perturb protein structure and membrane insertion, with severe functional effects. Structural analysis of molecular models is therefore demonstrated to be a valuable tool to rationalize the effects of mutations in the context of the clinical phenotype severity. CONCLUSION: Advanced molecular diagnosis, structural analysis and clinical correlations reveal that MADD patients harboring a severe prognosis mutation in one allele can actually revert to a milder phenotype by complementation with a milder mutation in the other allele. However, such patients are nevertheless in a precarious metabolic balance which can revert to severe fatal outcomes during catabolic stress or secondary pathology, thus requiring strict clinical follow-up.


Electron-Transferring Flavoproteins/genetics , Iron-Sulfur Proteins/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Oxidoreductases Acting on CH-NH Group Donors/genetics , Acyl-CoA Dehydrogenase/deficiency , Acyl-CoA Dehydrogenase/genetics , Alleles , Female , Genetic Predisposition to Disease , Genotype , Humans , Infant, Newborn , Male , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/pathology , Mutation, Missense/genetics , Neonatal Screening , Portugal/epidemiology , Pregnancy , Prognosis , Riboflavin/genetics , Riboflavin/metabolism
5.
Methods Mol Biol ; 1873: 255-264, 2019.
Article En | MEDLINE | ID: mdl-30341615

Systematic identification of buffer formulations and small molecule chaperones that improve the expression, stability, and storage of proteins with therapeutic interest has gained enormous importance in biochemical research as well as in biotechnology and biomedical applications. In particular, the biochemical characterization of disease-related proteins and their genetic variants that result in misfolding requires systematic determination of protein stability, screening of optimal buffer conditions for biophysical and structural studies, and in some cases, the identification of small molecule chaperones with the potential to ameliorate folding defects. Among the several techniques available, differential scanning fluorimetry (DSF) is currently an extensively employed screening and analysis method for thermal shift and protein stability assays. Here we describe a step-by-step generic protocol for fast characterization of protein thermal stability and analysis of stabilization in thermal-shift assays by additives, ligands and chemical chaperones using ß-oxidation mitochondrial dehydrogenases as model. These enzymes are associated to inborn errors of metabolism caused by mutant variants with folding and stability defects for which we previously established folding correction afforded by their cognate cofactors and substrates. With this example we thus illustrate the potential applications of the method in screening small molecule folding correctors among metabolites, ligands, cofactors or candidate drugs with therapeutic potential in protein folding diseases.


Fluorometry , Protein Folding , Proteins/chemistry , Thermodynamics , Fluorescent Dyes , Fluorometry/methods , Humans , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Protein Stability , Proteins/metabolism , Proteostasis Deficiencies , Transition Temperature
6.
Curr Drug Targets ; 17(13): 1527-34, 2016.
Article En | MEDLINE | ID: mdl-27527619

Riboflavin, or vitamin B2, plays an important role in the cell as biological precursor of FAD and FMN, two important flavin cofactors which are essential for the structure and function of flavoproteins. Riboflavin has been used in therapeutic approaches of various inborn errors of metabolism, notably in metabolic disorders resulting either from defects in proteins involved in riboflavin metabolism and transport or from defects in flavoenzymes. The scope of this review is to provide an updated perspective of clinical cases in which riboflavin was used as a potential therapeutic agent in disorders affecting mitochondrial energy metabolism. In particular, we discuss available mechanistic insights on the role of riboflavin as a pharmacological chaperone for the recovery of misfolded metabolic flavoenzymes.


Energy Metabolism/drug effects , Mitochondrial Diseases/drug therapy , Riboflavin/therapeutic use , Humans , Mitochondria/metabolism , Mitochondrial Diseases/physiopathology , Protein Folding , Riboflavin/metabolism , Riboflavin/pharmacology , Vitamin B Complex/metabolism , Vitamin B Complex/pharmacology , Vitamin B Complex/therapeutic use
7.
PLoS One ; 9(9): e107157, 2014.
Article En | MEDLINE | ID: mdl-25198162

ETHE1 is an iron-containing protein from the metallo ß-lactamase family involved in the mitochondrial sulfide oxidation pathway. Mutations in ETHE1 causing loss of function result in sulfide toxicity and in the rare fatal disease Ethylmalonic Encephalopathy (EE). Frequently mutations resulting in depletion of ETHE1 in patient cells are due to severe structural and folding defects. However, some ETHE1 mutations yield nearly normal protein levels and in these cases disease mechanism was suspected to lie in compromised catalytic activity. To address this issue and to elicit how ETHE1 dysfunction results in EE, we have investigated two such pathological mutations, ETHE1-p.Arg163Gln and p.Arg163Trp. In addition, we report a number of benchmark properties of wild type human ETHE1, including for the first time the redox properties of the mononuclear iron centre. We show that loss of function in these variants results from a combination of decreased protein stability and activity. Although structural assessment revealed that the protein fold is not perturbed by mutations, both variants have decreased thermal stabilities and higher proteolytic susceptibilities. ETHE1 wild type and variants bind 1 ± 0.2 mol iron/protein and no zinc; however, the variants exhibited only ≈ 10% of wild-type catalytically activity. Analysis of the redox properties of ETHE1 mononuclear iron centre revealed that the variants have lowered reduction potentials with respect to that of the wild type. This illustrates how point mutation-induced loss of function may arise via very discrete subtle conformational effects on the protein fold and active site chemistry, without extensive disruption of the protein structure or protein-cofactor association.


Brain Diseases, Metabolic, Inborn/genetics , Gene Expression Regulation , Iron/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Mutation/genetics , Nucleocytoplasmic Transport Proteins/chemistry , Nucleocytoplasmic Transport Proteins/genetics , Purpura/genetics , Sulfides/metabolism , Circular Dichroism , Electron Spin Resonance Spectroscopy , Humans , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Nucleocytoplasmic Transport Proteins/metabolism , Oxidation-Reduction , Protein Conformation , Protein Stability , Zinc/metabolism
8.
PLoS One ; 7(9): e46328, 2012.
Article En | MEDLINE | ID: mdl-23029480

The periplasmic sensor domains GSU0582 and GSU0935 are part of methyl accepting chemotaxis proteins in the bacterium Geobacter sulfurreducens. Both contain one c-type heme group and their crystal structures revealed that these domains form swapped dimers with a PAS fold formed from the two protein chains. The swapped dimerization of these sensors is related to the mechanism of signal transduction and the formation of the swapped dimer involves significant folding changes and conformational rearrangements within each monomeric component. However, the structural changes occurring during this process are poorly understood and lack a mechanistic framework. To address this issue, we have studied the folding and stability properties of two distinct heme-sensor PAS domains, using biophysical spectroscopies. We observed substantial differences in the thermodynamic stability (ΔG = 14.6 kJ.mol(-1) for GSU0935 and ΔG = 26.3 kJ.mol(-1) for GSU0582), and demonstrated that the heme moiety undergoes conformational changes that match those occurring at the global protein structure. This indicates that sensing by the heme cofactor induces conformational changes that rapidly propagate to the protein structure, an effect which is directly linked to the signal transduction mechanism. Interestingly, the two analyzed proteins have distinct levels of intrinsic disorder (25% for GSU0935 and 13% for GSU0582), which correlate with conformational stability differences. This provides evidence that the sensing threshold and intensity of the propagated allosteric effect is linked to the stability of the PAS-fold, as this property modulates domain swapping and dimerization. Analysis of the PAS-domain shows that disorder segments are found either at the hinge region that controls helix motions or in connecting segments of the ß-sheet interface. The latter is known to be widely involved in both intra- and intermolecular interactions, supporting the view that it's folding and stability are at the basis of the specificity and regulation of many types of PAS-containing signaling proteins.


Bacterial Proteins/chemistry , Geobacter/chemistry , Heme/chemistry , Allosteric Regulation , Amino Acid Sequence , Bacterial Proteins/metabolism , Chemotaxis/physiology , Chromatography, Gel , Circular Dichroism , Geobacter/physiology , Kinetics , Methylation , Models, Molecular , Molecular Sequence Data , Protein Folding , Protein Multimerization , Protein Stability , Protein Structure, Secondary , Protein Structure, Tertiary , Signal Transduction , Spectrum Analysis , Thermodynamics
9.
Curr Top Med Chem ; 12(22): 2546-59, 2012.
Article En | MEDLINE | ID: mdl-23339307

In the past few decades, improved early diagnosis methods, technological developments and an increasing crosstalk between clinicians and researchers has led to the identification of an increasing number of inborn metabolic diseases. In these disorders, missense mutations are the most frequent type of genetic defects, frequently resulting in defective protein folding. A better understanding at the molecular level of protein misfolding and its role in disease has prompted the emergence of therapies based in the use of small molecules that have the ability to correct protein folding defects. Well-known cases are reported for phenylketonuria and Gaucher's disease. Most of these compounds have a specific mechanism of action interacting directly with a particular protein, the so called pharmacological chaperones. Among such small molecules are protein ligands, either natural substrates or synthetic derivatives, cofactors, competitive inhibitors, and agonist/antagonists. In this review we will start by briefly overviewing the mechanisms through which such ligands exert a stabilizing action, and then move on to an extended discussion on therapeutic approaches and use of vitamins and substrates to correct protein misfolding in metabolic disorders. Examples of vitamins that have been successfully prescribed to rescue some cases of inborn errors of metabolism will be presented. In particular, the role of riboflavin supplementation in the treatment of fatty acid ß-oxidation disorders will be thoroughly analyzed, focusing on recent reports that shed light on the molecular basis of vitamin responsiveness. Moreover, we will highlight the latest studies that point to a synergistic effect of cofactors and metabolites in the rescue of defective fatty acid ß-oxidation enzymes. The synergism of multiple small molecules may underlie a promising general pharmacological strategy for the treatment of metabolic diseases in general.


Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Protein Folding , Fatty Acids/metabolism , Humans , Ligands , Molecular Targeted Therapy/methods , Oxidation-Reduction , Phenylketonurias/metabolism , Riboflavin/pharmacology , Vitamins/pharmacology
10.
Biochim Biophys Acta ; 1812(12): 1658-63, 2011 Dec.
Article En | MEDLINE | ID: mdl-21968293

Protein misfolding is a hallmark of a number of metabolic diseases, in which fatty acid oxidation defects are included. The latter result from genetic deficiencies in transport proteins and enzymes of the mitochondrial ß-oxidation, and milder disease conditions frequently result from conformational destabilization and decreased enzymatic function of the affected proteins. Small molecules which have the ability to raise the functional levels of the affected protein above a certain disease threshold are thus valuable tools for effective drug design. In this work we have investigated the effect of mitochondrial cofactors and metabolites as potential stabilizers in two ß-oxidation acyl-CoA dehydrogenases: short chain acyl-CoA dehydrogenase and the medium chain acyl-CoA dehydrogenase as well as glutaryl-CoA dehydrogenase, which is involved in lysine and tryptophan metabolism. We found that near physiological concentrations (low micromolar) of FAD resulted in a spectacular enhancement of the thermal stabilities of these enzymes and prevented enzymatic activity loss during a 1h incubation at 40°C. A clear effect of the respective substrate, which was additive to that of the FAD effect, was also observed for short- and medium-chain acyl-CoA dehydrogenase but not for glutaryl-CoA dehydrogenase. In conclusion, riboflavin may be beneficial during feverish crises in patients with short- and medium-chain acyl-CoA dehydrogenase as well as in glutaryl-CoA dehydrogenase deficiencies, and treatment with substrate analogs to butyryl- and octanoyl-CoAs could theoretically enhance enzyme activity for some enzyme proteins with inherited folding difficulties.


Acyl-CoA Dehydrogenase/chemistry , Butyryl-CoA Dehydrogenase/chemistry , Coenzymes/chemistry , Glutaryl-CoA Dehydrogenase/chemistry , Mitochondrial Proteins/chemistry , Acyl Coenzyme A/chemistry , Calorimetry, Differential Scanning , Catalytic Domain , Enzyme Assays , Enzyme Stability , Flavin-Adenine Dinucleotide/chemistry , Humans , Protein Binding , Protein Unfolding , Riboflavin/chemistry , Transition Temperature
...